Abstract

An important event in the pathogenesis of Alzheimer's disease (AD) is the deposition of the amyloid beta (Abeta)1-40 and 1-42 peptides in a fibrillar form, with Abeta42 typically having a greater propensity to undergo this conformational change. A major risk factor for late-onset AD is the inheritance of the apolipoprotein E (apoE) 4 allele [3,14,31]. We previously proposed that apoE may function as a "pathological chaperone" in the pathogenesis of AD (i.e. modulate the structure of Abeta, promoting or stabilizing a beta-sheet conformation), prior to the discovery of this linkage [7,40,41,42]. Data from apoE knockout / AbetaPP^(V717F) mice, has shown that the presence of apoE is necessary for cerebral amyloid formation [1,2], consistent with our hypothesis. However, in betaPP^(V717F) mice expressing human apoE3 or E4 early Abeta deposition at 9 months is suppressed, but by 15 months both human apoE expressing mice had significant fibrillar Abeta deposits with the apoE4 expressing mice having a 10 fold greater amyloid burden [8,9]. This and other data has suggested that apoE, in addition to having a facilitating role in fibril formation, may also influence clearance of Abeta peptides. In order to address if apoE affects the clearance of Abeta peptides across the blood-brain barrier (BBB) and whether there are differences in the clearance of Abeta40 versus Abeta42, we performed stereotactic, intra-ventricular micro-injections of Abeta40, Abeta42 or control peptides in wild-type, apoE knock-out (KO) or human apoE3 or apoE4 expressing transgenic mice. We found that consistent with other studies [5], Abeta40 is rapidly cleared from the brain across the BBB; however, Abeta42 is cleared much less effectively. This clearance of exogenous Abeta peptides across the BBB does not appear to be affected by apoE expression. This data suggests that Abeta42 production may favor amyloid deposition due to a reduced clearance across the BBB, compared to Abeta40. In addition, our experiments support a role of apoE as a pathological chaperone, and do not suggest an isotype specific role of apoE in exogenous Abeta peptide clearance from the CSF across the BBB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.