Abstract

Cl(-)-ATPase in the CNS is a candidate for an outwardly directed neuronal Cl(-) transporter requiring phosphatidylinositol-4-phosphate (PI4P) for its optimal activity. To test its pathophysiological changes in a phosphatidylinositol (PI) metabolism disorder, the effects of neurotoxic factors in Alzheimer's disease (AD), amyloid beta proteins (Abetas), on the Cl(-)-ATPase activity were examined using primary cultured rat hippocampal neurons. Amyloid beta proteins (1-40, 1-42 and 25-35) concentration-dependently (1-100 nM) and time-dependently (from 1 h to 6 day) decreased Cl(-)-ATPase activity and elevated intracellular Cl(-) concentrations ([Cl(-)]i), Abeta25-35 being the most potent. Addition of inositol or 8-Br-cyclic GMP completely reversed these Abeta-induced changes. The recoveries in enzyme activity were attenuated by an inhibitor of PI 4-kinase, 10 microM wortmannin or 20 microM quercetin, but not by a PI 3-kinase inhibitor, 50 nM wortmannin or 10 microM LY294002. The PI, PIP and PIP2 levels of the plasma membrane-rich fraction were lower in the Abeta-treated cells as compared with each control. In the Abeta-exposed culture, but not in control, stimulation by 10 microM glutamate for 10 min significantly increased fragmentation of DNA and decreased cell viability. Addition of inositol or 8-Br-cyclic GMP prevented the effect of Abeta-treatment on the neurotoxicity of glutamate. Thus, Abetas reduce neuronal Cl(-)-ATPase activity, resulting in an increase in [Cl(-)]i probably by lowering PI4P levels, and this may reflect a pre-apoptotic condition in early pathophysiological profiles of AD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call