Abstract

The effect of Alzheimer's disease pathology on activity of individual neocortical neurons in the intact neural network remains obscure. Ongoing spontaneous activity, which constitutes most of neocortical activity, is the background template on which further evoked-activity is superimposed. We compared in vivo intracellular recordings and local field potentials (LFP) of ongoing activity in the barrel cortex of APP/PS1 transgenic mice and age-matched littermate CONTROLS, following significant amyloid-β (Aβ) accumulation and aggregation. We found that membrane potential dynamics of neurons in Aβ-burdened cortex significantly differed from those of nontransgenic durations of the depolarized state were considerably shorter, and transitions to that state frequently failed. The spiking properties of APP/PS1 neurons showed alterations from those of both firing patterns and spike shape were changed in the APP/PS1 group. At the population level, LFP recordings indicated reduced coherence within neuronal assemblies of APP/PS1 mice. In addition to the physiological effects, we show that morphology of neurites within the barrel cortex of the APP/PS1 model is altered compared to CONTROLS. These results are consistent with a process where the effect of Aβ on spontaneous activity of individual neurons amplifies into a network effect, reducing network integrity and leading to a wide cortical dysfunction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.