Abstract

Over the past two decades, evidence has accumulated that the human amygdala exerts some of its functions also when the observer is not aware of the content, or even presence, of the triggering emotional stimulus. Nevertheless, there is as of yet no consensus on the limits and conditions that affect the extent of amygdala’s response without focused attention or awareness. Here we review past and recent studies on this subject, examining neuroimaging literature on healthy participants as well as brain-damaged patients, and we comment on their strengths and limits. We propose a theoretical distinction between processes involved in attentional unawareness, wherein the stimulus is potentially accessible to enter visual awareness but fails to do so because attention is diverted, and in sensory unawareness, wherein the stimulus fails to enter awareness because its normal processing in the visual cortex is suppressed. We argue this distinction, along with data sampling amygdala responses with high temporal resolution, helps to appreciate the multiplicity of functional and anatomical mechanisms centered on the amygdala and supporting its role in non-conscious emotion processing. Separate, but interacting, networks relay visual information to the amygdala exploiting different computational properties of subcortical and cortical routes, thereby supporting amygdala functions at different stages of emotion processing. This view reconciles some apparent contradictions in the literature, as well as seemingly contrasting proposals, such as the dual stage and the dual route model. We conclude that evidence in favor of the amygdala response without awareness is solid, albeit this response originates from different functional mechanisms and is driven by more complex neural networks than commonly assumed. Acknowledging the complexity of such mechanisms can foster new insights on the varieties of amygdala functions without awareness and their impact on human behavior.

Highlights

  • The amygdala (Amg) is a composite subcortical structure that comprises more than 12 sub-nuclei having distinctive patterns of input–output connections with the rest of the brain (Whalen and Phelps, 2009; Janak and Tye, 2015)

  • The Amg has long been known pivotal to emotion processing, Amygdala Response During Emotional Unawareness but it serves as an interface between emotion and cognitive functions, including decision-making, learning and attention (Bzdok et al, 2013)

  • The findings reported above converge with the idea that non-conscious emotion processing is not specific for faces, but rather for biologically primitive emotional signals that can be encoded from low spatial frequencies, that are clearly associated with action tendencies, and to which we are evolutionary prepared to respond (Tamietto and de Gelder, 2010)

Read more

Summary

Introduction

The amygdala (Amg) is a composite subcortical structure that comprises more than 12 sub-nuclei having distinctive patterns of input–output connections with the rest of the brain (Whalen and Phelps, 2009; Janak and Tye, 2015). Patients with cortical blindness ensuing from damage to, or denervation of, the primary visual cortex (V1) offer a case study to investigate the differences between conscious and non-conscious emotion processing due to sensory, as opposed to attentional, causes and the role of Amg therein (Celeghin et al, 2015b).

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.