Abstract

The modulation of brain circuits of emotion is a promising pathway to treat borderline personality disorder (BPD). Precise and scalable approaches have yet to be established. Two studies investigating the amygdala-related electrical fingerprint (Amyg-EFP) in BPD are presented: one study addressing the deep-brain correlates of Amyg-EFP, and a second study investigating neurofeedback (NF) as a means to improve brain self-regulation. Study 1 combined electroencephalography (EEG) and simultaneous functional magnetic resonance imaging to investigate the replicability of Amyg-EFP-related brain activation found in the reference dataset (N = 24 healthy subjects, 8 female; re-analysis of published data) in the replication dataset (N = 16 female individuals with BPD). In the replication dataset, we additionally explored how the Amyg-EFP would map to neural circuits defined by the research domain criteria. Study 2 investigated a 10-session Amyg-EFP NF training in parallel to a 12-weeks residential dialectical behavior therapy (DBT) program. Fifteen patients with BPD completed the training, N = 15 matched patients served as DBT-only controls. Study 1 replicated previous findings and showed significant amygdala blood oxygenation level dependent activation in a whole-brain regression analysis with the Amyg-EFP. Neurocircuitry activation (negative affect, salience, and cognitive control) was correlated with the Amyg-EFP signal. Study 2 showed Amyg-EFP modulation with NF training, but patients received reversed feedback for technical reasons, which limited interpretation of results. Recorded via scalp EEG, the Amyg-EFP picks up brain activation of high relevance for emotion. Administering Amyg-EFP NF in addition to standardized BPD treatment was shown to be feasible. Clinical utility remains to be investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.