Abstract

Specific emitter identification (SEI) and automatic modulation classification (AMC) are generally two separate tasks in the field of radio monitoring. Both tasks have similarities in terms of their application scenarios, signal modeling, feature engineering, and classifier design. It is feasible and promising to integrate these two tasks, with the benefit of reducing the overall computational complexity and improving the classification accuracy of each task. In this paper, we propose a dual-task neural network named AMSCN that simultaneously classifies the modulation and the transmitter of the received signal. In the AMSCN, we first use a combination of DenseNet and Transformer as the backbone network to extract the distinguishable features; then, we design a mask-based dual-head classifier (MDHC) to reinforce the joint learning of the two tasks. To train the AMSCN, a multitask cross-entropy loss is proposed, which is the sum of the cross-entropy loss of the AMC and the cross-entropy loss of the SEI. Experimental results show that our method achieves performance gains for the SEI task with the aid of additional information from the AMC task. Compared with the traditional single-task model, our classification accuracy of the AMC is generally consistent with the state-of-the-art performance, while the classification accuracy of the SEI is improved from 52.2% to 54.7%, which demonstrates the effectiveness of the AMSCN.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.