Abstract

Amsacta moorei entomopoxvirus (AMEV) infects certain lepidopteran and orthopteran insects and is the most studied member of the genus Betaentomopoxvirus. It has been considered as a potential vector for gene therapy, a vector to express exogenous proteins and a biological control agent. One of its open reading frames, amv248, encodes a putative glycosyltransferase and is the only known attachment protein conserved in AMEV and chordopoxviruses. The ORF was successfully expressed and the protein was shown to bind soluble heparin, both in silico and in vitro. Our results also showed that, while viral infection was inhibited by soluble glycosaminoglycans (GAGs), GAG-deficient cells were more resistant to the virus. Finally, we revealed that amv248 encodes an active heparin-binding glycosyltransferase which is likely to have a key role in the initiation of infection by AMEV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.