Abstract
Antimicrobial peptides (AMPs) are small molecular polypeptides that can be widely used in the prevention and treatment of microbial infections. Although many computational models have been proposed to help identify AMPs, a high-performance and interpretable model is still lacking. In this study, new benchmark data sets are collected and processed, and a stacking deep architecture named AMPpred-MFA is carefully designed to discover and identify AMPs. Multiple features and a multihead attention mechanism are utilized on the basis of a bidirectional long short-term memory (LSTM) network and a convolutional neural network (CNN). The effectiveness of AMPpred-MFA is verified through five independent tests conducted in batches. Experimental results show that AMPpred-MFA achieves a state-of-the-art performance. The visualization interpretability analyses and ablation experiments offer a further understanding of the model behavior and performance, validating the importance of our feature representation and stacking architecture, especially the multihead attention mechanism. Therefore, AMPpred-MFA can be considered a reliable and efficient approach to understanding and predicting AMPs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of chemical information and modeling
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.