Abstract

This study reports the preparation and characterization of silver nanoparticles synthesized by the mediation of the plant weed Stachytarpheta cayennensis through solution method. Ultraviolet visible spectroscopy (UV-Vis) determines the presence of nanoparticles in the solution. Infrared spectroscopy (IR) proves organic molecules at the particles interface. Powder X-ray diffraction (PXRD) provides phase composition and crystallinity. Shape was showed by scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX) demonstrated the elemental mapping of the silver nanoparticles. Hydrogen peroxide scavenging and phosphomolybdenum antioxidant assays, egg albumin denaturation anti-inflammation study, and the formation mechanism complete the study. The particles have been found composed of pure silver Ag and silver chloride AgCl nanocrystallites. The average crystallite sizes were found to be 13 nm and 20 nm for Ag and AgCl respectively. A Rietveld refinement based XRD pattern data followed by Williamson-Hall plot allows a size and strain analysis. Based on SEM, spherical agglomerates materials were formed and EDX proved the presence of Cl- ions. The reaction formation mechanism of Ag and AgCl is proposed to be simultaneous and competitive. The silver nanoparticles moderately inhibit the denaturation of egg albumin and exhibit antioxidant action; hence, the nanoparticles could be considered as a potential source for biomedical applications.

Highlights

  • One of the most direct effects of reducing the size of materials to the nanometer range is appearance of quantization effects due to the confinement of the movement of electrons, which leads to discrete energy levels depending on the size of the structure

  • This study reports the preparation and characterization of silver nanoparticles synthesized by the mediation of the plant weed Stachytarpheta cayennensis through solution method

  • We report the first use of Stachytarpheta cayennensis plant extract for silver nanoparticle synthesis

Read more

Summary

Introduction

One of the most direct effects of reducing the size of materials to the nanometer range is appearance of quantization effects due to the confinement of the movement of electrons, which leads to discrete energy levels depending on the size of the structure. Control over dimensions as well as composition of structures makes it possible to tailor material properties to specific applications which are influenced by quantum confinement effect (QCE) [1]. When an electron-hole pair is squeezed below the dimensions approaching excitons Bohr radius, quantum confinement effects become prominent in the structure and the effective band gap increases. Material scientists are developing research towards novel materials with better properties, more functionalities and lower cost than the existing ones. In this light, methods are employed to improve the nano-entity performance to gain better control over particle size, distribution and morphology [4]. One of the critical goals is the satisfactory reproducibility of synthesized materials

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call