Abstract

The order parameter and its variations in space and time in many different states in condensed matter physics at low temperatures are described by the complex function Ψ(r, t). These states include superfluids, superconductors, and a subclass of antiferromagnets and charge density waves. The collective fluctuations in the ordered state may then be categorized as oscillations of phase and amplitude of Ψ(r, t). The phase oscillations are the Goldstone modes of the broken continuous symmetry. The amplitude modes, even at long wavelengths, are well defined and are decoupled from the phase oscillations only near particle-hole symmetry, where the equations of motion have an effective Lorentz symmetry, as in particle physics and if there are no significant avenues for decay into other excitations. They bear close correspondence with the so-called Higgs modes in particle physics, whose prediction and discovery are very important for the standard model of particle physics. In this review, we discuss the theory and the possible observation of the amplitude or Higgs modes in condensed matter physics—in superconductors, cold atoms in periodic lattices, and uniaxial antiferromagnets. We discuss the necessity for at least approximate particle-hole symmetry as well as the special conditions required to couple to such modes because, being scalars, they do not couple linearly to the usual condensed matter probes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call