Abstract

An acoustic vector sensor array consists of multiple sound pressure microphones and particle velocity sensors. A pressure microphone usually has an omni-directional response, yet a particle velocity sensor is directional. Currently, acoustic vector sensor arrays are under investigation for far field source localization and visualization. One of the major practical issues in these applications, however, is to determine the accurate position, orientation and complex (phase and amplitude) sensitivity of each sensor within the array. In this study, a calibration method is developed to determine each of those crucial parameters based on a limited number of measurements with a reference sensor and multiple sound sources located at known locations. The calibration method is also designed to be robust to mistakenly switched cable connections. Ideally, the calibration process should take place in an anechoic environment, but efforts have been made to compensate for the effects of moderate background noise and reflections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.