Abstract

Pancharatnam-Berry (P-B) metasurfaces introduce geometric phases to circularly polarized electromagnetic waves through geometric rotation of the unit cells, thereby converting spin angular momentum (SAM) to orbital angular momentum (OAM) of photons and achieving flexible modulation of spin-polarized waves. It is highly desirable for dynamically tunable P-B metasurfaces to be actively applied. Here, combining double split-ring resonators (DSRRs) with photosensitive semiconductor germanium (Ge), we propose three types of all-optical active Pancharatnam-Berry coding metasurface for dynamic amplitude modulation of spin waves and vortex beams in the terahertz band. Coupled with signal processing methods such as the convolution operation, optical active P-B coding metasurfaces show a strong regulation effect on terahertz beams. This opens up a broad path for coding metasurface applications such as high-speed wireless terahertz communications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.