Abstract
The amplitude ("Higgs") mode is a ubiquitous collective excitation related to spontaneous breaking of a continuous symmetry. We combine quantum MonteCarlo (QMC) simulations with stochastic analytic continuation to investigate the dynamics of the amplitude mode in a three-dimensional dimerized quantum spin system. We characterize this mode by calculating the spin and dimer spectral functions on both sides of the quantum critical point, finding that both the energies and the intrinsic widths of the excitations satisfy field-theoretical scaling predictions. While the line width of the spin response is close to that observed in neutron scattering experiments on TlCuCl_{3}, the dimer response is significantly broader. Our results demonstrate that highly nontrivial dynamical properties are accessible by modern QMC and analytic continuation methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.