Abstract

We investigate the possibility of obtaining chimera state solutions of the nonlocal complex Ginzburg-Landau equation (NLCGLE) in the strong coupling limit when it is important to retain amplitude variations. Our numerical studies reveal the existence of a variety of amplitude-mediated chimera states (including stationary and nonstationary two-cluster chimera states) that display intermittent emergence and decay of amplitude dips in their phase incoherent regions. The existence regions of the single-cluster chimera state and both types of two-cluster chimera states are mapped numerically in the parameter space of C(1) and C(2), the linear and nonlinear dispersion coefficients, respectively, of the NLCGLE. They represent a new domain of dynamical behavior in the well-explored rich phase diagram of this system. The amplitude-mediated chimera states may find useful applications in understanding spatiotemporal patterns found in fluid flow experiments and other strongly coupled systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.