Abstract
In this paper we rigorously derive stochastic amplitude equations for a rather general class of SPDEs with quadratic nonlinearities forced by small additive noise. Near a change of stability we use the natural separation of time-scales to show that the solution of the original SPDE is approximated by the solution of an amplitude equation, which describes the evolution of dominant modes. Our results significantly improve older results. We focus on equations with quadratic nonlinearities and give applications to the one-dimensional Burgers’ equation and a model from surface growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.