Abstract

This study focuses on the amplitude dependency of damping of tall structures by the random decrement technique (RDT). Many researchers have adopted RDT to establish the amplitude dependency of damping ratios in super-tall buildings under strong wind loads. In this study, a series of simulated examples were analyzed to examine the reliability of this method. Results show that damping ratios increase as vibration amplitudes increase in several cases; however, the damping ratios in the simulated signals were preset as constants. This finding reveals that this method and the derived amplitude-dependent damping ratio characteristics are unreliable. Moreover, this method would obviously yield misleading results if the simulated signals contain Gaussian white noise. Full-scale measurements on a super-tall building were conducted during four typhoons, and the recorded data were analyzed to observe the amplitude dependency of damping ratio. Relatively wide scatter is observed in the resulting damping ratios, and the damping ratios do not appear to have an obvious nonlinear relationship with vibration amplitude. Numerical simulation and field measurement results indicate that the widely-used method for establishing the amplitude-dependent damping characteristics of super-tall buildings and the conclusions derived from it might be questionable at the least. More field-measured data must be collected under strong wind loads, and the damping characteristics of super-tall buildings should be investigated further.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.