Abstract

Near- and postcritical spherical-wave reflections contain amplitude and phase variations with incident angle that are not predicted by plane-wave solutions. However, if a spherical wavefield is decomposed into plane waves by a time-intercept-slowness ([Formula: see text]) transform, then plane-wave reflection coefficients (the Zoeppritz) can be used as the basis of amplitude/phase versus angle analysis. The spherical-wave effects on reflection coefficients near the critical angle (in the time-offset domain) were decomposed by [Formula: see text] transformation into plane waves. Kinematic ray tracing linked the reflection angle at the target reflector and the apparent slowness at the surface receiver, which enabled extracting the amplitude/phase versus angle data at the reflector from the surface [Formula: see text] data. The most reliable inversion results were obtained by combining the extracted amplitudes and phases in a composite inversion for the elastic parameters below the target reflector.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.