Abstract
In this paper, a permalloy layer has been employed in the fabrication of a coupled line electromagnetic bandgap (EMBG) device to tune both amplitude and phase. A magnetically biased microwave coplanar configuration manufactured with evaporated permalloy has been measured, and a circuit modelling has been studied to evaluate the measured effects in terms of variable attenuation and phase shift. Starting from a permalloy made by the mixture 80% nickel and 20% iron content, we fabricated an electromagnetic bandgap (EMBG) structure based on a periodic arrangement of single sections of a transmission line with variable impedance, also including a central region with coupled lines. The bandpass characteristics of the EMBG device can be tuned by changing permalloy’s permeability through the application of a DC magnetic field $H_{0}$ (parallel to the plane of the structure). In particular, using a magnetic field up to 3000 Oe, it was possible to change the phase by ca. 45° and the amplitude by ca. 7 dB in the X band.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.