Abstract

Theoretical and experimental investigations demonstrated that in real acoustooptic modulators the diffraction of light by a standing ultrasonic wave may give rise to both phase and amplitude nonreciprocities of counterpropagating light waves. Analytic expressions are derived for the dependences of these nonreciprocities on the parameters of the traveling component of an ultrasonic wave in a modulator. It is shown that when the angle of incidence of light on a modulator deviates from the Bragg angle, the phase nonreciprocity may be suppressed, but the amplitude nonreciprocity becomes maximal and its sign is governed by the law of deviation of the angle of incidence from the Bragg angle. A diffraction acoustooptic feedback makes it possible not only to achieve mode locking with an acoustooptic modulator utilizing a traveling ultrasonic wave, but also to control the magnitude and sign of amplitude–frequency nonreciprocities. It is reported that an acoustooptic feedback can be used to generate self-pumping waves in a solid-state mode-locked ring laser and thus stabilize bidirectional lasing in a wide range of the frequency offset between the counterpropagating waves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.