Abstract

This paper gives a review on the design and use of both amplitude filters and phase filters to achieve a large focal depth in incoherent imaging systems. Traditional optical system design enhances the resolution of incoherent imaging systems by optical-only manipulations or some type of post-processing of an image that has been already recorded. A brief introduction to recent techniques to increase the depth of field by use of hybrid optical/digital imaging system is reported and its performance is compared with a conventional optical system. This technique, commonly named wavefront coding, employs an aspherical pupil plane element to encode the incident wavefront in such a way that the image recorded by the detector can be accurately restored over a large range of defocus. As reported in earlier work, this approach alleviates the effects of defocus and its related aberrations whilst maintaining diffraction-limited resolution. We explore the control of third order aberrations (spherical aberration, coma, astigmatism, and Petzval field curvature) through wavefront coding. This method offers the potential to implement diffraction-limited imaging systems using simple and low-cost lenses. Although these performances are associated with reductions in signal-to-noise ratio of the displayed image, the jointly optimized optical/digital hybrid imaging system can meet some specific requirements that are impossible to achieve with a traditional approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.