Abstract

ObjectiveAcute lung injury (ALI) is characterized by inflammation and currently lacks an efficacious pharmacological intervention. The medicine combination of Lonicerae Japonicae Flos (LJF) and Forsythiae Fructus (FF) demonstrates combined properties in its anti-infective, anti-inflammatory, and therapeutic effects, particularly in alleviating respiratory symptoms. In previous studies, Chinese medicine has shown promising efficacy in lipopolysaccharides (LPS)-induced ALI. However, there have been no reports of LJF and FF pairing for lung injury. The aim of this study is to compare the efficacy of herb pair Lonicerae Japonicae Flos −Forsythiae Fructus (LF) with LJF or FF alone in the treatment of ALI, and to explore whether LJF and FF have a combined effect in the treatment of lung injury, along with the underlying mechanism involved. MethodsA total of 36 mice were divided into six groups (control, model, LJF, FF, LF, dexamethasone) based on the treatments they received after undergoing sham-operation/LPS tracheal instillation. H&E staining and pulmonary edema indexes were used to evaluate lung injury severity. Alveolar exudate cells (AECs) were counted based on cell count in bronchoalveolar lavage fluid (BALF), and neutrophil percentage in BALF was measured using flow cytometry. Myeloperoxidase (MPO) activity in BALF was measured using enzyme-linked immunosorbent assay (ELISA), while the production of IL-1β, TNF-α, and IL-6 in the lung and secretion level of them in BALF were detected by quantitative polymerase chain reaction (qPCR) and ELISA. The effect of LJF, FF, and LF on the expression of caspase-1 and IL-1β proteins in bone marrow derived macrophages (BMDMs) supernatant was assessed using Western blot method under various inflammasome activation conditions. In addition, the concentration of IL-1β and changes in lactatedehydrogenase (LDH) release levels in BMDMs supernatant after LJF, FF, and LF administration, respectively, were measured using ELISA. Furthermore, the effects of LJF, FF and LF on STING and IRF3 phosphorylation in BMDMs were detected by Western blot, and the mRNA changes of IFN-β, TNF-α, IL-6 and CXCL10 in BMDMs were detected by qPCR. ResultsLF significantly attenuated the damage to alveolar structures, pulmonary hemorrhage, and infiltration of inflammatory cells induced by LPS. This was evidenced by a decrease in lung index score and wet/dry weight ratio. Treatment with LF significantly reduced the total number of neutrophil infiltration by 75 % as well as MPO activity by 88 %. The efficacy of LF in reducing inflammatory factors IL-1β, TNF-α, and IL-6 in the lungs surpasses that of LJF or FF, approaching the effectiveness of dexamethasone. In BMDMs, the co-administration of 0.2 mg/mL of LJF and FF demonstrated superior inhibitory effects on the expression of nigericin-stimulated caspase-1 and IL-1β, as well as the release levels of LDH, compared to individual treatments. Similarly, the combination of 0.5 mg/mL LJF and FF could better inhibit the phosphorylation levels of STING and IRF3 and the production of IFN-β, TNF-α, IL-6, and CXCL10 in response to ISD stimulation. ConclusionThe combination of LJF and FF increases the therapeutic effect on LPS-induced ALI, which may be mechanistically related to the combined effect inhibition of cyclic-GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) and NOD-like receptor family protein 3 (NLRP3) inflammasomes pathways by LJF and FF. Our study provides new medicine candidates for the clinical treatment of ALI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call