Abstract

Sewage sludge was already identified as an important source of microplastics (MPs) in the environment. Therefore, investigating the effects of sludge treatment processes on sludge-based MPs is essential for understanding the environmental risks and controlling their release. This study investigated the occurrence characteristics and elucidated the fragmentation mechanism of sludge-based MPs before and after the thermal drying treatment of sludge. The results showed that this treatment increased the abundance of sludge-based MPs by about 10-fold, with enhanced fragmentation and fracture parameters, and increased the abundance of <100 μm MPs to >60 %. Remarkably, both polypropylene-microplastics (PP-MPs) and polyethylene terephthalate-microplastics (PET-MPs) did not show significant chemical aging. The structural analysis showed that the molecular chain disorientation and secondary crystallization of PP-MPs and PET-MPs occurred. These transformations caused the contraction of the polymer molecular chains and the generation of micro-mechanical stresses, leading to the formation of warpage structures and stress cracking on the MPs' surface. These phenomena also contributed to the further fragmentation of the MPs and the development of finer MPs particles. The findings of the present investigations emphasize that the thermal drying of sewage sludge amplifies the environmental risk of sludge-based MPs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call