Abstract

To determine phylogenetic diversity of a functional gene from strain collections or environmental DNA amplifications, new and fast methods are required. Catechol 2,3-dioxygenase (C23O) subfamily I.2.A genes, known to be of crucial importance for aromatic degradation, were used as a model to adapt the amplified ribosomal DNA restriction analysis to functional genes. Sequence data of C23O genes from 13 reference strains, representing the main branches of the C23O family I.2.A phylogeny, were used for simulation of theoretical restriction patterns. Among other restriction enzymes, Sau3A1 theoretically produce characteristic profiles from each subfamily I.2.A member and their similarities reassembled the main divergent branches of C23O gene phylogeny. This enzyme was used to perform an amplified functional DNA restriction analysis (AFDRA) on C23O genes of reference strains and 19 isolates. Cluster analyses of the restriction fragment profiles obtained from isolates showed patterns with distinct similarities to the reference strain profiles, allowing to distinguish four different groups. Sequences of PCR fragments from isolates were in close agreement with the phylogenetic correlations predicted with the AFDRA approach. AFDRA thus provided a quick assessment of C23O diversity in a strain collection and insights of its gene phylogeny affiliation among known family members. It cannot only be easily applied to a vast number of isolates but also to define the predominant polymorphism of a functional gene present in environmental DNA extracts. This approach may be useful to differentiate functional genes also for many other gene families.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call