Abstract

Chemical warfare agents such as sarin are highly toxic, and detection of even trace levels is important. Using a hydrogel film containing a built-in two-dimensional chemical potential gradient, we demonstrate the detection of a sarin simulant under conditions potentially as low as a level 1 (6.90 × 10–9 mg/cm3 for 10 min) Acute Exposure Guideline Level sarin exposure. Specifically, the sarin simulant diisopropyl fluorophosphate (DFP) is aerosol-deposited on a hydrogel film containing a built-in ionic chemical gradient and the enzyme, diisopropyl fluorophosphatase (DFPase). DFPase degrades the DFP, releasing fluoride ions. The fluoride ions are then concentrated by the gradient to a miniature electrochemical sensor embedded in the hydrogel providing a 30-fold amplification of the fluoride ion signal, which is an indication of exposure to DFP, relative to a gradient-free system. This method is general for agents which hydrolyze into chemically detectable ionic species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.