Abstract

We investigate the interaction between an electron beam and a THz guided electromagnetic wave in a helical slow-wave structure formed by self-assembly of a conductive ribbon. We have previously shown the controlled fabrication of this slow-wave structure and its potential to form the basis for widely deployable millimeter-through-THz traveling-wave tube amplifiers. The process allows the fabrication of helical slow-wave structures with single and double chirality. Here, we use three-dimensional simulations to perform a comparative analysis of beam–wave interaction in self-assembled gold helices with single and double chirality. First, the structures are modeled without the electron beam (cold helices) to calculate the distribution of the electric field generated by the high-frequency wave. We perform simulations of cold helices by using Computer Simulation Technology Microwave Studio. Second, we evaluate the interaction between an electron beam and the THz travelingwave by using a particle in cell simulator in Computer Simulation Technology Particle Studio. Simulation studies show that a switch in chirality in the middle of self-assembled helices generates a reflected wave that boosts beam–wave interaction. We demonstrate that this efficient energy exchange will potentially provide high gain in THz traveling-wave tube amplifiers based on self-assembled helices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call