Abstract

The role of salting-out strength on (1) polymer diffusiophoresis from high to low salt concentration, and (2) salt osmotic diffusion from high to low polymer concentration was investigated. These two cross-diffusion phenomena were experimentally characterized by Rayleigh interferometry at 25 °C. Specifically, we report ternary diffusion coefficients for polyethylene glycol (molecular weight, 20 kg·mol(-1)) in aqueous solutions of several salts (NaCl, KCl, NH4Cl, CaCl2, and Na2SO4) as a function of salt concentration at low polymer concentration (0.5% w/w). We also measured polymer diffusion coefficients by dynamic light scattering in order to discuss the interpretation of these transport coefficients in the presence of cross-diffusion effects. Our cross-diffusion results, primarily those on salt osmotic diffusion, were utilized to extract N(w), the number of water molecules in thermodynamic excess around a macromolecule. This preferential-hydration parameter characterizes the salting-out strength of the employed salt. For chloride salts, changing cation has a small effect on N(w). However, replacing NaCl with Na2SO4 (i.e., changing anion) leads to a 3-fold increase in N(w), in agreement with cation and anion Hofmeister series. Theoretical arguments show that polymer diffusiophoresis is directly proportional to the difference N(w) - n(w), where n(w) is the number of water molecules transported by the migrating macromolecule. Interestingly, the experimental ratio, n(w)/N(w), was found to be approximately the same for all investigated salts. Thus, the magnitude of polymer diffusiophoresis is also proportional to salting-out strength as described by N(w). A basic hydrodynamic model was examined in order to gain physical insight on the role of n(w) in particle diffusiophoresis and explain the observed invariance of n(w)/N(w). Finally, we consider a steady-state diffusion problem to show that concentration gradients of strong salting-out agents such as Na2SO4 can produce large amplifications and depletions of macromolecule concentration. These effects may be exploited in self-assembly and adsorption processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.