Abstract

The amplification of enstrophy is explored using cinematographic stereoscopic particle image velocimetry data. The enstrophy production rate is investigated by observation of the statistical tendency of the vorticity vector (ω) to align with the eigenvectors of the rate of strain tensor (ei). Previous studies have shown thatωpreferentially aligns with the intermediate strain-rate eigenvector (e2) and is arbitrarily aligned with the extensive strain-rate eigenvector (e1). This study shows, however, that the nature of enstrophy amplification, whether it is positive (enstrophy production) or negative (enstrophy destruction), is dictated by the alignment betweenωande1. Parallel alignment leads to enstrophy production (ωiSijωj>0), whereas perpendicular alignment leads to enstrophy destruction (ωiSijωj<0). In this way, the arbitrary alignment betweenωande1is the summation of the effects of enstrophy producing and enstrophy destroying regions. The structure of enstrophy production is also examined with regards to the intermediate strain-rate eigenvalue,s2. Enstrophy producing regions are found to be topologically ‘sheet-forming’, due to an extensive (positive) value ofs2in these regions, whereas enstrophy destroying regions are found to be ‘spotty’. Strong enstrophy producing regions are observed to occur in areas of strong local swirling as well as in highly dissipative regions. Instantaneous visualizations, produced from the volume of data created by Taylor's hypothesis, reveal that these ‘sheet-like’ strong enstrophy producing regions encompass the high enstrophy, strongly swirling ‘worms’. These ‘worms’ induce high local strain fields leading to the formation of dissipation ‘sheets’, thereby revealing enstrophy production to be a complex interaction between rotation and strain – the skew-symmetric and symmetric components of the velocity gradient tensor, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call