Abstract

To clarify the characteristics of tidal currents and heights over Kashevarov Bank (KB) in the Sea of Okhotsk, continuous mooring observation with ADCP and CT sensors was carried out near the summit of KB from 20 September 1999 to 20 June 2000. The velocity, sea-surface height, and bottom-water temperature were dominated by the diurnal signal with fortnightly modulation. The velocity amplitude reached ∼ 1.4 m s - 1 during the spring tide. The K 1 and O 1 tidal current ellipses are clockwise with a nearly circular shape and nearly barotropic. To interpret the physical mechanism of the amplified diurnal currents over KB, a seamount-trapped wave (SMTW) model was applied to KB. The frequency of SMTW approximated to KB is close to the diurnal tidal frequencies for the first-gravest mode of first azimuthal wavenumber. The structure and properties of the SMTW mode are consistent with the observations. It is proposed that the amplified diurnal currents over KB are caused by the resonance with SMTW. The observed fortnightly variability in tidal currents and bottom- and surface-temperatures suggests that both the cold spot in summer and the low sea-ice concentration in winter over KB are due to the horizontal and vertical mixing with the surrounding subsurface water, caused by strong tidal currents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call