Abstract

Amplification of chirality across length scales is a key concept pertinent to many models aiming to unravel the origin of homochirality. Tactoids of lyotropic chromonic liquid crystals formed by DNA, dyes, and other flat ionic molecules in water in the biphasic nematic + isotropic regime turn out to be a particularly relevant system to investigate chirality transfer and amplification. Herein, we present experiments to determine the amplification of chirality by luminescent gold nanoclusters decorated with adenosine monophosphate inducing chiral nematic tactoids formed by disodium cromoglycate in water. Polarized optical microscopy investigations of the induced homochiral tactoids reveal that adenosine monophosphate shows a higher optical activity when bound to the surface of such gold nanoclusters in comparison to free adenosine monophosphate, despite a three-time lower overall concentration. Free adenosine monophosphate also induces the opposite chiral twist both in the bulk nematic phase as shown by induced thin film circular dichroism spectropolarimetry and in the tactoids in comparison to adenosine monophosphate bound to the gold nanocluster. Overall, these experiments demonstrate that lyotropic chromonic liquid crystal tactoids are powerful systems to image and quantify chirality amplification by key biological chiral molecules that would have played a role in the origin of homochirality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.