Abstract

The aphid Myzus persicae is a globally significant crop pest that has evolved high levels of resistance to almost all classes of insecticide. To date, the neonicotinoids, an economically important class of insecticides that target nicotinic acetylcholine receptors (nAChRs), have remained an effective control measure; however, recent reports of resistance in M. persicae represent a threat to the long-term efficacy of this chemical class. In this study, the mechanisms underlying resistance to the neonicotinoid insecticides were investigated using biological, biochemical, and genomic approaches. Bioassays on a resistant M. persicae clone (5191A) suggested that P450-mediated detoxification plays a primary role in resistance, although additional mechanism(s) may also contribute. Microarray analysis, using an array populated with probes corresponding to all known detoxification genes in M. persicae, revealed constitutive over-expression (22-fold) of a single P450 gene (CYP6CY3); and quantitative PCR showed that the over-expression is due, at least in part, to gene amplification. This is the first report of a P450 gene amplification event associated with insecticide resistance in an agriculturally important insect pest. The microarray analysis also showed over-expression of several gene sequences that encode cuticular proteins (2–16-fold), and artificial feeding assays and in vivo penetration assays using radiolabeled insecticide provided direct evidence of a role for reduced cuticular penetration in neonicotinoid resistance. Conversely, receptor radioligand binding studies and nucleotide sequencing of nAChR subunit genes suggest that target-site changes are unlikely to contribute to resistance to neonicotinoid insecticides in M. persicae.

Highlights

  • Insecticide resistance in crop pests has been a mounting constraint on crop protection since the introduction of synthetic insecticides in the 1940s, and has been shown to develop through three main mechanisms

  • Pre-treatment with piperonyl butoxide (PBO) substantially synergised the effect of all of the insecticides tested, complete susceptibility was not restored with a resistance factor of 2.5–15 remaining

  • In the present study the involvement of P450s in neonicotinoid resistance in M. persicae was established by using the P450 inhibitor PBO, with a pre-treatment of PBO substantially synergising the effect of all the insecticides tested on a resistant M. persicae clone from Greece (5191A)

Read more

Summary

Introduction

Insecticide resistance in crop pests has been a mounting constraint on crop protection since the introduction of synthetic insecticides in the 1940s, and has been shown to develop through three main mechanisms These are 1) increased production of metabolic enzymes (such as esterases, glutathione transferases and P450-dependent monooxygenases) that break down or sequester the insecticide, 2) structural changes (mutations) in the gene encoding the insecticide target protein that make it less sensitive to the toxic effect of the insecticide (e.g. acetylcholinesterase for organophospates/carbamates, the voltage-gated sodium channel for pyrethroids, and the GABA receptor for cyclodienes) and 3) reduced penetration of insecticide through the cuticle [1]. The peach-potato aphid, Myzus persicae is an economically significant pest in many temperate regions of the world causing direct damage to a broad range of arable and horticultural crops and transmitting more than 100 plant viruses [2] As a result this species has been treated extensively with insecticides and has developed multiple resistance to many classes of compounds including organophosphates, carbamates and pyrethroids. There have been reports of resistance to the neonicotinoid imidacloprid in M. persicae from Europe, the USA and Japan [5,6,7], raising concerns for the longterm efficacy of this insecticide class

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call