Abstract

In this paper, new formulations to predict the change in mechanical properties, namely, post-yield stiffness and characteristic strength of lead rubber bearings (LRBs) at low ambient temperatures, are proposed based on test results. Proposed formulations consider not only the effect of low temperature but also the effect of exposure time to low temperature. Accordingly, a full-scale LRB was tested dynamically after being conditioned at temperatures of −20, −10, 0, and 20 °C for 3, 6, and 24 h. During the displacement-controlled cyclic tests, various levels of shear strain were applied to the isolator with loading frequencies of 0.1 Hz and 0.5 Hz. Then, force-displacement curves of LRB were recorded, and the corresponding amplifications in its hysteretic properties were noted. The accuracy of existing equations to estimate the amount of amplification in mechanical properties was evaluated through the experimental results. It was found that the existing formulas do not represent the effect of exposure time on LRB characteristics at low temperatures. On the other hand, the proposed equations result in highly accurate estimations of post-yield stiffness and characteristic strength of LRB at low temperatures for different exposure times.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.