Abstract

MicroRNAs (miRNAs) are a class of small, non-coding RNA molecules involved in the regulation of gene expression, thus considered as promising biomarkers for cancer, cardiovascular diseases, neurodegenerative diseases, etc. However, quantitative analysis of miRNAs faces challenges owing to their high homology, small size & ultra-low abundance, and disease occurrence is often related to abnormal expression of multiple miRNAs where method for parallel miRNAs analysis is required. In this work, multiplexed analysis of miRNAs was established on a plasmonic nano-chip capable of fluorescence enhancement in the near-infrared region. Combined with polyadenylation at the hydroxyl terminate of target miRNA to afford abundant sites for fluorophore labeling, our assay achieved amplification-free detection of miRNAs from nM to fM with the limit of detection down to ca. 5 fM. A miRNA panel was constructed to detect 10 miRNAs differentially expressed in MCF-7 and A549 cell lines and validated with qRT-PCR, demonstrating the practical application of this method. This scalable platform can be customized for different miRNA panels, facilitating multiple miRNA profiling for various diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call