Abstract

Recent results from flutter experiments of the supercritical airfoil NLR 7301 at flow conditions close to the transonic dip are presented. The airfoil was mounted with two degrees-of-freedom in an adaptive solid-wall wind tunnel, and boundary-layer transition was tripped. Flutter boundaries exhibiting a transonic dip were determined and limit-cycle oscillations (LCOs) were measured. The local energy exchange between the fluid and the structure during LCOs is examined and leads to the following findings: at supercritical Mach numbers below that of the transonic-dip minimum the presence of a shock-wave and its dynamics destabilizes the aeroelastic system such that the decreasing branch of the transonic dip develops. At higher Mach numbers the shock-wave motion has a stabilizing effect such that the flutter boundary increases to higher flutter-speed indices with increasing Mach number. Amplified oscillations near this branch of the flutter boundary obtain energy from the flow mainly due to the dynamics of a trailing-edge flow separation. A slight nonlinear amplitude dependency of the shock motion and a possibly occurring boundary-layer separation cause the amplitude limitation of the observed LCOs. The impact of the findings on the numerical simulation of these phenomena is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.