Abstract
Background and purposeBlocking of the autophagy-signaling has the potential to improve cancer therapy. In the present study, the role of autophagy for radioresistance of human tumor cells was tested under clinically relevant hypoxia (1% O2). Materials and methodsNon-small cell lung cancer cell lines A549 and H460, head and neck squamous cell carcinoma FaDu, colon carcinoma cell line HCT116 and mouse-embryo-fibroblasts were analyzed under normoxic (21% O2) and hypoxic (0.01% and 1% O2) conditions with respect to clonogenic cell survival and hypoxia-induced autophagy. Immunofluorescence and electron microscopy were used to monitor the autophagy process and Western blotting of LC3, AMPK, and BNIP3 was applied to analyze autophagy signaling. ResultsClinically relevant hypoxia stimulated autophagy in tumor cells as indicated by enhanced LC3-I to LC3-II conversion. Furthermore, hypoxia stimulated autophagy was approved by Immunofluorescence staining and electron-microscopy analysis of autophagosome vacuoles. Preconditioning of tumor cells to moderate-hypoxia increased their radioresistance that was significantly reversed following pretreatment with autophagy inhibitor, chloroquine. Using siRNA against AMPK as well as AMPK deficient cells, autophagy stimulation by 1% O2 was shown to be AMPK-independent. However, a correlation between the expression of BNIP3 and autophagy-stimulation was observed under this condition. ConclusionUnder clinically relevant hypoxia (1% O2) the stimulation of autophagy mediates resistance of hypoxic tumor cells to ionizing radiation, which is independent of AMPK signaling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.