Abstract

Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a heterotrimeric enzyme and central regulator of cellular energy metabolism. The impact of single nucleotide polymorphisms (SNPs) in all 7 AMPK subunit genes on adiposity, glucose metabolism, and lipid metabolism has not yet been systematically studied. To analyze the associations of common SNPs in all AMPK genes, and of different scores thereof, with adiposity, insulin sensitivity, insulin secretion, blood glucose, low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, total cholesterol, and triglycerides. A cohort of 2789 nondiabetic participants from the Tübingen Family study of type 2 diabetes, metabolically characterized by oral glucose tolerance test and genotyped by genome-wide SNP array, was analyzed. We identified 6 largely nonoverlapping SNP sets across 4 AMPK genes (PRKAA1, PRKAA2, PRKAG2, PRKAG3) associated with adiposity, insulin sensitivity, insulin secretion, blood glucose, total/LDL cholesterol, or HDL cholesterol, respectively. A genetic score of body-fat-increasing alleles revealed per-allele effect sizes on body mass index (BMI) of +0.22 kg/m2 (P = 2.3 × 10-7), insulin sensitivity of -0.12 × 1019 L2/mol2 (P = 9.9 × 10-6) and 2-hour blood glucose of +0.02 mmol/L (P = 0.0048). Similar effects on blood glucose were observed with scores of insulin-sensitivity-reducing, insulin-secretion-reducing and glucose-raising alleles, respectively. A genetic cholesterol score increased total and LDL cholesterol by 1.17 mg/dL per allele (P = 0.0002 and P = 3.2 × 10-5, respectively), and a genetic HDL score decreased HDL cholesterol by 0.32 mg/dL per allele (P = 9.1 × 10-6). We describe largely nonoverlapping genetic determinants in AMPK genes for diabetes-/atherosclerosis-related traits, which reflect the metabolic pathways controlled by the enzyme. Formation of trait-specific genetic scores revealed additivity of allele effects, with body-fat-raising alleles reaching a marked effect size. (J Clin Endocrinol Metab XX: 0-0, 2019).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call