Abstract

Autophagy is a degradation process, wherein long-lived proteins, damaged organelles, and protein aggregates are degraded to maintain cellular homeostasis. Upon starvation, 5'-AMP-activated protein kinase (AMPK) initiates autophagy. We show that ampkα- cells exhibit 50% reduction in pinocytosis and display defective phagocytosis. Re-expression of AMPKα in ampkα- cells co-localizes with red fluorescence protein-tagged bacteria. The ampkα- cells show reduced cell survival and autophagic flux under basal and starvation conditions. Co-immunoprecipitation studies show conservation of the AMPK-ATG1 axis in basal autophagy. Computational analyses suggest that the N-terminal region of DdATG1 is amenable for interaction with AMPK. Furthermore, β-actin was found to be a novel interacting partner of AMPK, attributed to the alteration in macropinocytosis and phagocytosis in the absence of AMPK. Additionally, ampkα- cells exhibit enhanced poly-ubiquitinated protein levels and allied large ubiquitin-positive protein aggregates. Our findings suggest that AMPK provides links among pinocytosis, phagocytosis, autophagy, and is a requisite for basal autophagy in Dictyostelium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.