Abstract

Our previous studies indicated that calcitonin gene-related peptide (CGRP) alleviates hyperoxia-induced lung injury and suggested the possible involvement of autophagy in this process. Herein, we aimed to further explore the potential involvement of tumor protein p53 (TP53) and autophagy in the mode of action of CGRP against hyperoxia-induced lung injury in vitro and in vivo. The study conducted tests on type II alveolar epithelial cells (AECII) and rats that were subjected to hyperoxia treatment or combined treatment of hyperoxia with CGRP, CGRP inhibitor, rapamycin (an autophagy agonist), 3-methyladenine (3-MA, an autophagy inhibitor), TP53 silencing/inhibitor (pifithrin-α), or expression vector/activator (PRIMA-1 (2,2-bis(hydroxymethyl)-3-quinuclidinone)) and their corresponding controls. We found that oxidative stress, apoptosis, and autophagy were all increased by hyperoxia treatment in vitro. However, treating AECII cells with CGRP reversed hyperoxia-induced oxidative stress and apoptosis but further promoted autophagy. In addition, the combined treatment with rapamycin or TP53 silencing with CGRP promoted the effect of CGRP, while contrary results were obtained with combined therapy with 3-MA or TP53 overexpression. In vivo, the number of hyperoxia-induced autophagosomes was promoted in the lung tissue of neonatal rats. Furthermore, hyperoxia increased the expression levels of AMP-activated protein kinase (AMPK) alpha 1 (also known as protein kinase AMP-activated catalytic subunit alpha 1 (PRKAA1)) but inhibited TP53 and mechanistic target of rapamycin (MTOR); these expression trends were regulated by CGRP treatment. In conclusion, we showed that CGRP can attenuate hyperoxia-induced lung injury in neonatal rats by enhancing autophagy and regulating the TP53/AMPK/MTOR crosstalk axis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.