Abstract

Excessive production of reactive oxygen species (ROS) leads to oxidative stress in host cells and affects the progress of disease. Mitochondria are an important source of ROS and their dysfunction is closely related to ROS production. S. uberis is a common causative agent of mastitis. The expression of key enzymes of the mitochondrial apoptotic pathway is increased in mammary epithelial cells after S. uberis stimulation, while expression of proteins related to mitochondrial function is decreased. Drp1, a key protein associated with mitochondrial function, is activated upon infection. Accompanied by mitochondria-cytosol translocation of Drp1, Fis1 expression is significantly upregulated while Mfn1 expression is downregulated implying that the balance of mitochondrial dynamics is disrupted. This leads to mitochondrial fragmentation, decreased mitochondrial membrane potential, higher levels of mROS and oxidative injury. The AMPK activator AICAR inhibits the increased phosphorylation of Drp1 and the translocation of Drp1 to mitochondria by salvaging mitochondrial function in an AMPK/Drp1 dependent manner, which has a similar effect to Drp1 inhibitor Mdivi-1. These data show that AMPK, as an upstream negative regulator of Drp1, ameliorates mitochondrial dysfunction induced by S. uberis infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.