Abstract

The p53 family of proteins has an important role in determining cell fate in response to different types of stress, such as DNA damage, hypoxia, or oncogenic stress. In recent years, p53 has also been shown to respond to metabolic stress, and to be induced by the AMP-activated protein kinase (AMPK), a central cellular energy sensor. A bioinformatic analysis revealed three putative AMPK phopshorylation sites in p73, a p53 tumor suppressor paralog. In vitro and in vivo assays confirmed that AMPK phosphorylates p73 on a novel residue, S426. Following specific pharmacologic stimulation of AMPK in cells, p73 protein half-life was prolonged leading to p73 accumulation in the nucleus. We show that p73 escaped the E3 ligase Itch resulting in reduced p73 ubiquitination and proteasomal degradation. Furthermore, chronic activation of AMPK led to apoptosis that was p73 dependent, but only in p53-expressing cells. Surprisingly, we found that p73 was required for p53 stabilization and accumulation under AMPK activation, but was dispensable under DNA damage. Our findings couple p73 with p53 in determining cell fate under AMPK-induced metabolic stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.