Abstract
The present study examined the effect of chronic activation of 5'-AMP-activated protein kinase (AMPK) on the metabolic profile, including uncoupling protein-3 (UCP-3) and myosin heavy chain (MHC)-based fibre phenotype of rodent fast-twitch tibialis anterior muscle. Sprague-Dawley rats were given daily injections of 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR), a known activator of AMPK, or vehicle (control) for 28 days. After AICAR treatment, UCP-3 expression at the mRNA level was elevated 1.6 +/- 0.1-fold (P < 0.006) and corresponded to a 3.3 +/- 0.2-fold increase in UCP-3 protein content (P < 0.0001). In addition, the activities of the mitochondrial reference enzymes citrate synthase (EC 4.1.3.7) and 3-hydroxyacyl-CoA-dehydrogenase (EC 1.1.1.35), which are known to increase in proportion to mitochondrial volume density, were elevated 1.6-fold (P < 0.006), while the activity of lactate dehydrogenase (EC 1.1.1.27) was reduced to 80 % of control (P < 0.02). No differences were detected after AICAR treatment in the activities of the glycolytic reference enzymes glyceraldehydephosphate dehydrogenase (EC 1.2.1.12) or phosphofructokinase (EC 2.7.1.11), nor were MHC-based fibre-type transitions observed, using immunohistochemical or electrophoretic analytical methods. These changes could not be attributed to variations in inter-organ signalling by metabolic substrates or insulin. We conclude that an AMPK-dependent pathway of signal transduction does mimic some of the metabolic changes associated with chronic exercise training, but does not affect expression of the MHC-based structural phenotype. Thus, the metabolic and MHC-based fibre types do not appear to be regulated in a co-ordinated way, but may be independently modified by different signalling pathways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.