Abstract

Impaired insulin signaling in skeletal muscle cells causes insulin resistance associated with the onset of type 2 diabetes. Although interleukin (IL)-1β has been considered to be implicated in the pathogenesis of type 2 diabetes, the action of prolonged stimulation with IL-1β on the insulin signaling pathway in skeletal muscle cells remains poorly understood. In the current study, we investigated the effect of IL-1β stimulation on insulin signal transduction from the insulin receptor (IR), resulting in glucose transporter 4 (GLUT4) translocation in skeletal muscle cells. In L6-GLUT4myc cells, stimulation with IL-1β for 24 h promoted GLUT4 translocation to the plasma membrane and increased glucose uptake in a concentration-dependent manner, whereas short-term stimulation with IL-1 for up to 6 h did not affect that. In addition, stimulation with IL-1β for 24 h further increased insulin-stimulated GLUT4 translocation. Interestingly, stimulation with IL-1β for 24 h did not cause any change in the phosphorylation of insulin signal molecules IR, insulin receptor substrate (IRS)-1, Akt, and p21-activated kinase (PAK1). Stimulation with IL-1β for 24 h significantly increased AMP-activated protein kinase (AMPK) phosphorylation and GLUT4 protein expression. Small interfering RNA (siRNA) targeting AMPK1/2 significantly inhibited IL-1β-stimulated GLUT4 translocation. These results suggest that prolonged stimulation with IL-1β positively regulates GLUT4 translocation in skeletal muscle cells. IL-1β may have a beneficial effect on maintaining glucose homeostasis in skeletal muscle cells in patients with type 2 diabetes. .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call