Abstract

The micronization technique called supercritical assisted atomization (SAA) was used to produce ampicillin microparticles with controlled particle size and particle size distribution suitable for aerosol drug delivery. The process is based on the solubilization of supercritical CO2 in a liquid solution. The ternary mixture is then sprayed through a nozzle and, as a consequence of enhanced atomization, solid microparticles are formed. Water and organic solvents were tested with ampicillin to determine the influence of the solvent on the process mechanism. SAA process parameters were studied by testing different supercritical/liquid solvent flow ratios, ampicillin concentrations in the liquid solution and nozzle diameters. The effect of these parameters on morphology, particle size and particle size distribution of microparticles was analysed. Ampicillin particles suitable for aerosol delivery in the size range 1-5 microm were obtained using buffered water. Moreover, by varying the solute concentration, ampicillin particles in a narrower range (1-3 microm) than that usually suggested for aerosol deliverable drugs were obtained. This is an example of particle size tailoring by SAA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.