Abstract
Fungal infections in immune-compromised patients are an important cause of mortality and morbidity. Amphotericin B (Amp B) is considered a powerful fungicidal drug but its clinical usage has certain limitations when administered intravenously due to its toxicity and poor solubility. In consideration of such challenges, in cutaneous leishmaniasis, the topical application of Amp B can be a safer option in many aspects. Thus, herein, biopolymer of polycaprolactone (PCL) nanoparticles (NPs) were developed with the loading of Amp B by nanoprecipitation for the treatment of topical leishmanial infections. Various parameters, such as concentration of PCL and surfactant Poloxamer 407, were varied in order to optimize the formation of nanoparticles for the loading of Amp B. The optimized formulation exhibited a mean hydrodynamic particle size of 183 nm with a spherical morphology and an encapsulation efficiency of 85%. The applications of various kinetic models reveal that drug release from nanoformulation follows Korsmeyer–Peppas kinetics and has a high diffusion exponent at a physiological pH of 7.4 as well a skin relevant pH = 5.5. The activity of the prepared nanoparticles was also demonstrated in Leishmania infected macrophages. The measured IC50 of the prepared nanoparticle formulation was observed to be significantly lower when compared to control free Amp B and AmBisome® for both L. tropica KWH23 and L. donovani amastigotes in order to demonstrate maximum parasite inhibition. The prepared topical nanoformulations are capable of providing novel options for the treatment of leishmaniasis, which can be possible after in vivo assays as well as the establishment of safety profiles.
Highlights
Leishmaniasis is a protozoal disease initiated by a parasite of genus Leishmania and mostly caused by sand flies acting as vectors for transmission
Amphotericin B (Amp B) is one of the key drugs utilized for the treatment of fungal infections and leishmaniasis, though poor bioavailability and gastrointestinal irritation may lead to reduced effects and patient non-compliance
It is interesting to study the potential of DMSO and Poloxamer 407 to enhance Nskaninompateerrimalse2a0t2io0,n10o,fxAFOmRpPEBEwR RhEeVnIEsuWpplemented into a polycaprolactone polymeric nanoemulsio6no.f 16
Summary
Leishmaniasis is a protozoal disease initiated by a parasite of genus Leishmania and mostly caused by sand flies acting as vectors for transmission. It is a major health concern throughout the world. Infected people total 12 million while annually around 1–2 million new cases are reported and could be fatal or self-healing [1]. The different infectious types of leishmaniasis are as follows: (a) cutaneous leishmaniasis; (b) mucocutaneous leishmaniasis; and (c) visceral leishmaniasis. Multiple ulcers resulting from multiple bites by the sand fly are prevalent in cases throughout the world. Cutaneous and visceral leishmaniasis represent major threats around the globe, mucocutaneous leishmaniasis is rarely reported [2]. A cure for cutaneous leishmaniasis (CL) exists in the use of prevalent antimonial modalities demanding different infusions with irregular sustainability and different reactions
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.