Abstract

Cutaneous leishmaniasis (CL), the most common clinical form of human leishmaniasis, is a non-fatal chronic and disabling disease characterized by erythema and nodular or ulcerative skin lesions that may cause permanent scars and disfigurement. Topical drug delivery represents a simple and efficacious approach to treat CL skin lesions. The association of drugs with nanocarrier systems enhances their permeation properties and increases the drug amount available in the dermis. Here, a deformable lipid vesicle (DLV) was optimized for the topical administration of Amphotericin B (AmB), with the aim of studying and understanding the advantages of this type of delivery system in the transport of a drug through the skin layers. AmB-DVL were characterized in terms of incorporation parameters, stability, and elasticity, and evaluated in vitro for their permeation properties, cytotoxicity, and anti-leishmanial activity. The AmB-DVL exhibited a translucent fluid gel-like aspect and a yellow color, a mean size of 132nm (PdI≤0.1), zeta potential values around zero (mV), and an AmB incorporation efficiency of 95%. Permeation and penetration assays suggest that AmB-DLV are suitable for topical administration since AmB was detected in the epidermal and dermal skin layers. AmB-DVL was able to reduce promastigote viability in a dose-dependent manner, as well as the number of intracellular amastigotes in THP-1 macrophages. Selectivity index (SI) value for AmB-DLV was considerably higher than that observed for free AmB. Results suggest that DLV may represent an attractive vehicle for dermal delivery of AmB and a new low-cost and safe therapeutic option in CL treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call