Abstract

ABSTRACT Background Currently, the incidence and prevalence of serious fungal infections is increasing, especially in immunosuppressed individuals. The co-administration of antibiotic and immunosuppressive therapies has driven the emergence of new multidrug-resistant fungal pathogens. Their significant increase and their ability to form biofilms is associated with rising morbidity and mortality. Research into novel synthetically prepared immunomodulators as potential immune response modifiers and prospective participants in drug delivery systems is of interest. Microbial polysaccharides with zwitterionic charge motifs were shown to be promising candidates. Methods Native and ultrasonically treated mannan from the yeast Candida albicans were chemically modified to contain both positive and negative charges in a nearly equimolar ratio mimicking the zwitterionic polysaccharides. RAW 264.7 macrophages and Balb/c mice were subjected as in vitro and in vivo models. Macrophage exposure to the set of amphoteric derivatives of mannan induced a release of Th1, Th2, Th17, and Treg cytokine signature patterns. The functionality of the exposed macrophages was assayed by cell proliferation and phagocytosis. Results The Th1 and Th17 dominance was over Th2. The phagocytosis and respiratory burst, together with the viability based on cell proliferation supported the bioavailability of formulas. Mouse immunization induced humoral immune responses with high titers of the IgM isotype with the IgM/IgG shift. Conclusion Our study demonstrated the immunobiological activities of amphoteric derivatives of mannan from Candida albicans. Amphoteric derivatives can be considered as bioavailable formulas with an effective immunomodulatory potency, prospectively applied as a subunit formula in the design of a mannan-based platform for drug and vaccine delivery systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call