Abstract

Paleobiogeographic patterns within the Amphisbaenia were evaluated using the modified Brooks Parsimony Analysis (BPA) and recently published morphological and molecular phylogenies. Extant amphisbaenians are present in Africa, South America, North America, Europe, and the Middle East. The modified BPA was used to determine the relative effects of Pangean breakup, sea-level change, and climate change on evolutionary and distributional patterns within the Amphisbaenia. The modified BPA also tested the biogeographic effect of the Rhineuridae's phylogenetic position as either most basal in the morphologic phylogeny or most derived in the molecular phylogeny. The morphological and molecular analyses resulted in two different biogeographic hypotheses. The morphological analysis indicated three major biogeographic regions for the Amphisbaenia: 1) Africa, South America, and the Caribbean, 2) western Asia, and 3) North America. The molecular analysis indicated two major biogeographic regions: 1) Africa, western Asia, and North America, and 2) South America. The morphological biogeographic pattern corresponds with the known timing of the breakup of Pangea and the resulting paleogeographic reconstructions of the Mesozoic and Early Cenozoic. While the molecular pattern is similar to patterns recovered from dinosaurian biogeographic studies, the closer connection of Africa with North America rather than South America does not match well-constrained geologic evidence for the sequence of Pangean breakup. Both paleobiogeographic analyses, however, resulted in congruent patterns of speciation through vicariance and geodispersal. This suggests that in addition to the breakup of Pangea, such cyclical Earth history processes as sea-level and climate changes played an important role in the biogeographic patterns of the Amphisbaenia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call