Abstract

Cellular senescence is an irreversible growth arrest with a dynamic secretome, termed the senescence-associated secretory phenotype (SASP). Senescence is a cell-intrinsic barrier for reprogramming, whereas the SASP facilitates cell fate conversion in non-senescent cells. However, the mechanisms by which reprogramming-induced senescence regulates cell plasticity are not well understood. Here, we investigate how the heterogeneity of paracrine senescence impacts reprogramming. We show that senescence promotes invitro reprogramming in a stress-dependent manner. Unbiased proteomics identifies a catalog of SASP factors involved in the cell fate conversion. Amphiregulin (AREG), frequently secreted by senescent cells, promotes invitro reprogramming by accelerating proliferation and the mesenchymal-epithelial transition via EGFR signaling. AREG treatment diminishes the negative effect of donor age on reprogramming. Finally, AREG enhances invivo reprogramming in skeletal muscle. Hence, various SASP factors can facilitate cellular plasticity to promote reprogramming and tissue repair.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.