Abstract

Epithelial and mesenchymal cells isolated from mouse embryonic lungs synthesized and responded to amphiregulin (AR) in a different fashion. Mesenchymal cells produced and deposited 3- to 4-fold more AR than epithelial cells, proliferated in the presence of exogenous AR, and their spontaneous growth was blocked by up to 85% by anti-AR antibodies. In contrast, epithelial cells exhibited a broad response to this growth regulator factor depending on whether they were supplemented with extracellular matrix (ECM) and whether this ECM was of epithelial or mesenchymal origin. AR-treated epithelial cells proliferated by up to 3-fold in the presence of mesenchymal-deposited ECM, remained unchanged in the presence of epithelial-deposited ECM, and decreased in their proliferation rate below controls in the absence of ECM supplementation. This effect was abolished by treatment with the glycosaminoglycan-degrading enzymes heparinase and heparitinase suggesting the specific involvement of heparan sulfate proteoglycan (HSPG) in AR-mediated cell proliferation. In whole lung explants, branching morphogenesis was inhibited by antibodies against the AR heparan sulfate binding site and stimulated by exogenous AR. Since during development, epithelial cells are in contact with mesenchymal ECM at the tips of the growing buds and alongside the basement membrane, focal variations in the proportion of epithelial and mesenchymal HSPG will focally affect epithelial proliferation rates. Therefore, AR-HSPG interaction may underlie the process of branching morphogenesis by inducing differential cell proliferation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.