Abstract

Antimicrobial photodynamic inactivation (aPDI) employs the combination of nontoxic photosensitizing dyes and visible light to kill pathogenic microorganisms regardless of drug-resistance, and can be used to treat localized infections. A meso-substituted tetra-methylpyridinium porphyrin with one methyl group replaced by a C12 alkyl chain (FS111) and its Pd-derivative (FS111-Pd) were synthesized and tested as broad-spectrum antimicrobial photosensitizers when excited by blue light (5 or 10 J/cm2 ). Both compounds showed unprecedented activity, with the superior FS111-Pd giving 3 logs of killing at 1 nM, and eradication at 10 nM for Gram-positive methicillin-resistant Staphylococcus aureus. For the Gram-negative Escherichia coli, both compounds produced eradication at 100 nM, while against the fungal yeast Candida albicans, both compounds produced eradication at 500 nM. Both compounds could be categorized as generators of singlet oxygen (ΦΔ = 0.62 for FS111 and 0.71 for FS111-Pd). An in vivo study was carried out using a mouse model of localized infection in a partial thickness skin abrasion caused by bioluminescent Gram-negative uropathogenic E. coli. Both compounds were effective in reducing bioluminescent signal in a dose-dependent manner when excited by blue light (405 nm), but aPDI with FS111-Pd was somewhat superior both during light and in preventing recurrence during the 6 days following PDT.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.