Abstract

Developing single wavelength laser triggered organic nanoplatforms for combined photothermal therapy (PTT)/photodynamic therapy (PDT) is a great prospect for biomedicine. However, most of organic nanoparticles were prepared by nanoprecipitation method, which have the potential issues of nanoparticles dissociation. In this work, a novel amphiphilic semiconducting oligomer DPP-BT-PEG which composed of a hydrophobic organic backbone and hydrophilic PEG side chains was designed and prepared. Due to the amphiphilic characteristic of DPP-BT-PEG, ideal nanoagents DPP-BT-PEG NPs were self-assembled by dissolving the amphiphilic molecule in water, which exhibited outstanding water-solubility, good biocompatibility, superb photostability, and excellent structural stability. Notably, upon exposure to a single near-infrared (NIR) laser, these nanoagents can produce cytotoxic hyperthermia and ROS simultaneously for effective cancer treatment due to the combined effects of PTT and PDT. This study supplies a promising tactic to construct non-dissociated NIR-absorbing organic nanoplatforms for combination cancer therapy, opening new dimension for biomedicine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call